JOURNAL OF COMPUTATIONAL PIYSICS DIS, 550 552 [19494)

NOTE

N-Body Simulations on Massively Parallel Architectures

- Simulating the properties of N particles, mutually inter-
acting through a pair-wise force, is the most common and
important computational physics problem in classical
statistical mechanics. These simulations yield information
that is inaccessible by other means and that leads to insight
and predictive behavior for a wide range of problems and
properties. In this note, we will report on our discovery
of several simple procedures that reduced by an order of
magnitude the computation time of our implementation of
such a simnulation on the massively parallel CM-200. The
simple philosophy behind these procedures might be useful
{or optimizing similar simulations en the CM-200 and other
massively parallel machines,

In N-body simulations, the positions of the particles X,
(and their momentum P;) are evolved in time by numeri-
cally integrating Newton's (Hamilton's) equations of
motion or Langevin’s equations for Brownian dynamics. In
either case, the problem reduces to solving a system of first-
order differential equtions similar to

dar;
_J=Gr'+Hn

dt (M

where G is the net force on particle / due to its interaction
with all other particles. This force is defined by

G=3 F;

e

(2)

with F; being the pair-wise {orce between particles i and j
and H, being the net force on particle i due to all other inter-
actions. Often, F; depends only on the distance between the
particles, ie., F;=F(|X,— X;|). This force might be, for
example, Coulomb’s law or a more phenomenological law
like the Lennard-Jones interaction. The 71, may be, for
example, external fields or random forces simulating con-
tact with a heat bath. The equations of motion can be
integrated by a variety of means that are embarassingly
parallel. The computational bottleneck is the calculation
of G,.

Two frequently used classes of techniques for computing
G, are tree methods and direct methods. The tree methods
recursively decompose the system of particles into sub-
systems and express the interaction between the subsystems

0021-9991 /94 $6.00
Copyright 15 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved,

by a multipole expansion [1]. These methods are par-
ticularly suitable for large systems because their asymptotic
complexity is proportional to O(Nlog{N)) for adaptive
methods [1-4] or proportional to O(N) for non-adaptive
methods [1. The direct method, on the other hand, simply
sums the forces between all pairs of particles so its com-
plexity is proportional to O(N?). However, the propor-
tionality constant in the direct method is smaller than that
for the multipole methods.

The direct method is often used instead of the asymptoti-
cally more efficient multipole method because

i. The multipole expansion may be unknown.

2. The system is sufliciently small that the direct method
is faster than the multipole method.

In addition, at some sufficiently fine granularity in the
decomposition in the multipole method, the direct method
becomes faster because of the lower proportionality factor
and, thus, becomes preferred. This crossover generally is
true at the leaves In a multipole method. Thus, eflicient
implementation of the direct method is an essential aspect of
any direct net force computation,

The parallel calculation of the net force has a computa-
tion part and a communication part. The computation part
is mainly concerned with the calculation of F;. Its optimiza-
tion, which normally involves the computation of some
function of the distance between X, and X, is essentially
architecture independent. On a parallel machine, once the
distance between particles is known, this force can often be
computed with no inter-processor communication.

The optimization of the communication part of the direct
solver is the main resuit of this note. It depends on the struc-
ture of the direct solver. Two common methods are used:
one is the “all-to-all broadcast method” {5, 67; the other is
what we will call the “Fortran 90 method.”

The all-to-all broadcast method presumes that the loca-
tions X of the particles are distributed throughout the nodes
of the architecture. A local copy Y of X is made; then for
each ¥;a Hamiltonian path through the processor network
is computed. The location of each particle is then suc-
cessively routed along its path which ensures that each par-
ticle location will eventually be transmitted through each
processor. The force on a particle is computed simply by

550

N-BODY SIMULATIONS ON PARALLEL ARCHITECTURES

summing the pair-wise interactions of all the particles that
pass through the processor in which it is stored. For systems
with a small number or particles, this method performs
poorly on the CM-200 because of processor under-utiliza-
tion.

The Fortran 90 method involves the use of standard
Fortran 90 intrinsics, such as SUM and SPREAD. If 4 is a
matrix, then SUM{A4, DIM =2) is the vector whose ith ele-
ment is the sum of the ith row of A, If X'is an N-dimensional
vector, then SPREAD(X,DIM=2, NCOPIES =N) is the
NxN mairix 4 whose ijth element is X, Similarly,
SPREAD{X,DIM =1, NCOPIES = N) is the matrix whose
ijth component is X;. The Fortran 90 method for com-
puting the net force on each particle in a one-dimensional
systern 15 shown in the following pseudo-code:

$1=SPREAD(X,CIM=1,NCOPTES = N)
§2=SPREAD(X, 1M =2, NCOPIES = N)
R=ABS(S2-S1)
F=TFUNC(R)
G =SUM(F, DIM=2)

The ijth element of the matrix R is the distance between par-
ticles at positions X; and X;. This matrix is then used to
obtain the forces F; from the user-defined function FUNC.
Finally, SUM is used to surn the forces.

Although the Fortran 90 method has the advantage of
portability to any Fortran 90 platform, the communication
functions SUM and SPREAD can be fairly slow. Further-
more, the SPREAD and SUM syntax seems to lack a certain
naturainess. The first optimization trick that we tried was to
replace the communication operations of the Fortran 50
method with inner and outer products. Since these products
are basic vector (matrix) computational tools, we thought it
was reasonable to assume that they would be well optimized
on the CM-200. The outer product of two vectors X and ¥
of length N is the Nx N matrix whose jjth element is

TABLE1

Timings in Milliseconds for Certain Fortran 90 Intrinsics versus
Equivalent Algebraiz Formulation for Varying ¥

N 1024 2048 4096 8192
SUM 19.8 70.8 275 —
MATMUL 421 7.39 11.6 284
SPREAD 13.1 43.7 159 622
OPROD 5.59 11.0 287 100.0
Note. Timings were obtained on one sequence {512 nodes) of a CM-

200 running slicewise CM Fortran 1,1. SUM failed due to insufficient
memory on the N = 8K problern.

5817115/2-21

551

X, * Y;. The inner product of these two vectors is the num-
ber SUM(X + ¥). Such an operation is intrinsic to matrix
multiplication. Letting U be a vector whose components
are all unity, we then observe that SUM(A,DIM=2) is
equivalent to the Fortran 90 expression MATMUL(A, U).
Similarly, we note that SPREAD(X, DIM =2, NCOPIES = N)
is the outer product of X and {7 and SPREAD(X, DIM=1,
NCOPIES = N) is the outer product of I/ and X. We can
rewrite our pseudo-code as

U=1
S1=0PROD(U, X)
S2=0PROD(X, U}

R=ABS(§2—S1)

F=TFUNC(R)

G =MATMUL(F, U)

In Table i, we present a number of timings. We first
observe that MATMUL is up to 20 times faster than SUM. At
first glance, this speed differential is surprising since MAT-
MUL does more “FLOPS” than SUM. On the other hand,
efficient SUM or MATMUL routines can involve numerous
extremely complex pipelining and synchronization issues
and are quite difficult to write efficientiy in microcode.
Because MATMUL is a more basic scientific operation than
SUM, presumably more eifort went into tuning it than into
tuning SUM. Since the outer product is not part of the
Fortran 90 standard, we used a library routine from the
CM-200’s CMSSL package [7]. Here, we denote this sub-
routine as OPROD. We see from Table I that a call to this
routine can be up to six times faster than the call
to SPREAD.

The final optimization that we made involved special pur-
pose microcode but is based on the simple observation the
displacement X;— X, between two particles can be inter-
preted as the outer sum of the vectors X and — X, which
could be computed by trivially replacing the multiplication
call in the outer-product routine with an addition call.
Thinking Machines Corporation provided this modifica-
tion. {The execution time for the outer-sum routine is the
same as that of the outer-product routine.) Using this
routine, we can replace the two outer-product calls in our
code by one outer-sum call, and our pseudo-code becomes

U=1

D =0SUM(X, —X)
R=ARS(D)
F=FUNC(R)

G =MATMUL(F, U}

552

Compared to our original pseudo-code, which was essen-
tially our actual original Fortran 90 coding, this new code
reduced our computation time by a factor of 10,

In conclusion, we formulated the ditect net force com-
putation in the N-body problem in terms of fast primitives
that are well adapted to the massively parallel architecture
of the CM-200 {8]. The communication overhead of the
direct N-body solver was reduced by one order of
magnitude. The method consisted in replacing Fortran 90
intrinsics by inner- and outer-product functions. In one
case, we used a routine in which a small modification to the
library outer-product routine was made to convert it to an
outer-sum routine. Although the use of this routine'
negatively impacts portability, we used it because it should
be very easy to replace it with a comparable optimized func-
tion call on other computers and because it is intrinsically
elegant. The technique was implemented and tested on a
molecular dynamics problem geared towards the study of
flux line dynamics in superconducting thin films. Results of
this calculation will be published elsewhere [9].

While our observations are, strictly speaking, specific to
the CM-200, we feel that the overall philosophy of using
linear algebra concepts to replace the thinking required to
use Fortran 90 intrinsics bears consideration in formulating
efficient coding strategies for parallel computing (10].
Linear algebra concepts match nicely to vector and parallel
computation. In addition, the scientific subroutine libraries
that accompany parallel computers, such as the CMSSL
library for the CM-200, are likely to have highly optimized
codes to execute the basic operations. With minor
experimentation, significant gains in performance, such as
the one reported here, might be possible both on the
CM-200 and other massively parallel computers.

! The cuter-sum routine is available from the lead author of this note.

STILLER, DAEMEN, AND GUBERNATIS

ACKNOWLEDGMENTS

One of us (L.S.) would like to thank both the Center for Nonlinear
Studies and the Advanced Computing Laboratory at the Los Alamos
National Laboratory for their hospitality while this work was conducted.
We thank the Advanced Computing Laboratory for the use of its computa-
tional facilities. We also thank the Thinking Machines Corporation for
providing us with the outer-sum microcode. This work was supported by
the U.S. Department of Energy.

REFERENCES

1. L. Greengard, “The Rapid Evaluation of Potential Fields in Particle
Systems,” MIT Press, Cambridge, MA, 1988,

2. I. Barnes and P. Hut, Nature 324, 446 (1986).

3. L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).

4. I. Carrier, L. Greengard, and V. Rokhlin, SI4AM J. Sci. Stat. Comput.
0 (4), 669 (1988).

5. 1.-P. Brunet and 8. Lennart Johnsson, fur. J. Super. Appl. 6 (3}, (1992).

6. 5. Lennart and C.-T. Ho, IEEE Trans. Comput. 38 {9), 1249 (1989).

7. Thinking Machines Corp., “CMSSL for CMFortran”, Cambridge,
MA, 1900,

8. Thinking Machines Corp., ,“The Conection Machine CM-200 Series
Technical Summary,” Cambridge, MA, 1900.

9. L. L. Daemen,). E. Gubernatis, L. J. Campbell, and L. Stiller,
Computer studies of flux dynamics in superconducting thin films
(unpublished).

10. L. Stiller, Los
(unpublished).

Alamos Technical Report LA-UR-92-2511

Received September 16, 1992; revised June 23, 1993

L. SToer

Department of Computer Science, The Johns Hopkins University,
Baltimore, Maryland 21218-2686

L. L. DAEMEN

J. E. GUBERNATIS

Theoretical Division, Los Alamos National Laberatory,
Los Alamos, New Mexico 87545

